故事会网

手机浏览器扫描二维码访问

第二十章 欧几里得算法(第1页)

欧几里得学生卡农对欧几里得说:“如果可以可靠的求出两个数字的最大公约数?”

欧几里得说:“用辗转相除法就可以,如果求a和b的最大公约数,如果a大于b,那就是a除以b,然后得到余数,然后再让除数b除以余数,然后一直让除数除以余数,最后余数为0的时候,得到的除数就是a和b的最大公约数。”

卡农说:“假如说1997和615这两个数字。”

欧几里得说:“1997除以615,等于3余出152。”

卡农说:“然后怎么求?”

欧几里得说:“除数除以余数,615除以152等于4余7.”

卡农说:“然后152除以7等于21余5.”

欧几里得接着说:“没错,然后7除以5,等于1余2.”

卡农说:“5除以2,等于2余1.”

欧几里得说:“2除以1,等于2余0.”

卡农说:“不能再往下了,余数已经为0,所以1997和615的最大公约数为1.”

欧几里得说:“所以说,相当于没有最大公约数。”

在以上基础上,后来数学中发展了环的概念,整环R是符合一下接个要求的:

1、A关于加法成为一个Abel群(其零元素记作0);

2、乘法满足结合律:(a*b)*c=a*(b*c);

3、乘法对加法满足分配律:a*(b+c)=a*b+a*c,(a+b)*c=a*c+b*c;

如果环A还满足以下乘法交换律,则称为“交换环”:

4、乘法交换律:a*b=b*a。

如果交换环A还满足以下两条件,就称为“整环”(integraldomain):

5、A中存在非零的乘法单位元,即存在A中的一个元素,记作1,满足:1不等于0,且对任意a,有:e*a=a*e=a;

6、ab=0=>a=0或b=0。

而后来也引入了欧几里得整环的概念,这是抽象代数中,这是一种能作辗转相除法的整环。凡欧几里得整环必为主理想环。

喜欢数学心请大家收藏:()数学心

新人驾到  国运:拥有多重身份的我很合理吧  玄灵界都知道我柔弱可怜但能打  我一枪一剑杀穿大陆  我的徒弟不对劲  穿到八零,我自带锦鲤系统!  大明:开局气疯朱元璋,死不登基  宗门全是美强惨,小师妹是真疯批  至尊战皇  农夫是概念神?三叶草了解一下!  摊牌了,我爹是绝顶高手!  哦豁!虐文炮灰不干了!  在下潘凤,字无双  译文欣赏:博伽瓦谭  永恒大陆之命运  穿成商户女摆烂,竟然还要逃难!  快穿之炮灰得偿所愿  暗无  混迹娱乐圈的日子  重生在宝可梦,我的后台超硬  

热门小说推荐
美梦时代

美梦时代

为了救一个小女孩,刚刚毕业的萧奇博士,从美国穿越回了八年前的中国,回到了自己的高中时代。重生之后,萧奇紧接着要做的,就是要帮忙性格淡然又才华出众的父亲,至少从副科级小官连升七级,青云直上,坐到副省级高官的位置,才不枉费了父亲一辈子的正直和善良。对于前世辜负和错过的女孩子,萧奇也下了决心,一定要努力给予她们幸福,不要...

苏狂

苏狂

下载客户端,查看完整作品简介。...

慕少,你老婆又重生了

慕少,你老婆又重生了

她死不瞑目,在江边守了三天三夜,来收尸的却不是她丈夫看着男人轻吻自己肿胀腐烂的尸体,她心中撼动不已,暗下许诺如果能重生,一定嫁给他!后来,她真的重生了,却成了他妹妹(⊙o⊙)慕容承说你再敢死给我看,我不介意变个态,和尸体洞房。她欲哭无泪,我滴哥!你早就变态了好么?!轻松搞笑,重口甜爽,可放心阅读...

逍遥潜龙(龙游艳界)

逍遥潜龙(龙游艳界)

一个无父无母的孤儿,一个被最有钱的女人领养的孤儿可是自卑彷徨的他却喜欢上了跟自己身份截然不同的人。可惜他却在跟最有钱的女董事长发生不能说的秘密之后一切都变了。各色各样的大小美人纷扰而至,围绕在他的身边!成熟美艳,清纯可爱,性感妩媚,柔情万千最后的最后,他凭借着自己的能力,在那多少美人美妇的陪伴之下,在这一片弱肉强食的世界之中创下了一个伟大的奇迹!...

每日热搜小说推荐